
django-intercom-io Documentation
Release 1.0.0

August 16, 2016

Contents

1 Development 3

2 Contents 5

i

ii

django-intercom-io Documentation, Release 1.0.0

django-intercom-io makes it easy for you to add support for intercom.io to your Django website.

Contents 1

django-intercom-io Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Development

The source repository can be found at https://github.com/eldarion/django-intercom-io

3

https://github.com/eldarion/django-intercom-io

django-intercom-io Documentation, Release 1.0.0

4 Chapter 1. Development

CHAPTER 2

Contents

2.1 ChangeLog

2.1.1 0.4

• change has function to use user.pk instead of email address

2.1.2 0.3

• add user id

2.1.3 0.2

• pass user to context for rendering template

2.1.4 0.1

• initial release

2.2 Installation

• To install

pip install django-intercom-io

• Add "intercom" to your INSTALLED_APPS setting:

INSTALLED_APPS = [
other apps
"intercom",

]

5

django-intercom-io Documentation, Release 1.0.0

2.3 Usage

At the top of your base template add:

{% load intercom_tags %}

And just before the </body> tag add:

{% intercom_js user %}

And if you want a feedback/support link, put:

Support

somewhere (e.g. in your nav bar) as explained by the intercom.io documentation.

In your settings file set INTERCOM_APP_ID and optionally (if you use a user hash for security)
INTERCOM_USER_HASH_KEY with the values provided by intercom.io.

2.3.1 Custom Data

intercom.io lets you send custom, per-user data to its site. django-intercom lets individual apps contribute what
custom data they want to provide.

If you have an INTERCOM_APPS setting, it should be a list of apps that have an intercom module in them contain-
ing a custom_data function. This function should take a user and return a dictionary to be sent to intercom.io as
custom data.

For example, if you have an app called foo with a Foo model, you might add:

INTERCOM_APPS = [
"foo",

]

to your settings and then in foo/intercom.py have:

from foo.models import Foo

def custom_data(user):
return {

"foo_count" : Foo.objects.filter(user=user).count(),
}

6 Chapter 2. Contents

	Development
	Contents

